Finite basis representations with nondirect product basis functions having structure similar to that of spherical harmonics.
نویسندگان
چکیده
The currently most efficient finite basis representation (FBR) method [Corey et al., in Numerical Grid Methods and Their Applications to Schrodinger Equation, NATO ASI Series C, edited by C. Cerjan (Kluwer Academic, New York, 1993), Vol. 412, p. 1; Bramley et al., J. Chem. Phys. 100, 6175 (1994)] designed specifically to deal with nondirect product bases of structures phi(n) (l)(s)f(l)(u), chi(m) (l)(t)phi(n) (l)(s)f(l)(u), etc., employs very special l-independent grids and results in a symmetric FBR. While highly efficient, this method is not general enough. For instance, it cannot deal with nondirect product bases of the above structure efficiently if the functions phi(n) (l)(s) [and/or chi(m) (l)(t)] are discrete variable representation (DVR) functions of the infinite type. The optimal-generalized FBR(DVR) method [V. Szalay, J. Chem. Phys. 105, 6940 (1996)] is designed to deal with general, i.e., direct and/or nondirect product, bases and grids. This robust method, however, is too general, and its direct application can result in inefficient computer codes [Czako et al., J. Chem. Phys. 122, 024101 (2005)]. It is shown here how the optimal-generalized FBR method can be simplified in the case of nondirect product bases of structures phi(n) (l)(s)f(l)(u), chi(m) (l)(t)phi(n) (l)(s)f(l)(u), etc. As a result the commonly used symmetric FBR is recovered and simplified nonsymmetric FBRs utilizing very special l-dependent grids are obtained. The nonsymmetric FBRs are more general than the symmetric FBR in that they can be employed efficiently even when the functions phi(n) (l)(s) [and/or chi(m) (l)(t)] are DVR functions of the infinite type. Arithmetic operation counts and a simple numerical example presented show unambiguously that setting up the Hamiltonian matrix requires significantly less computer time when using one of the proposed nonsymmetric FBRs than that in the symmetric FBR. Therefore, application of this nonsymmetric FBR is more efficient than that of the symmetric FBR when one wants to diagonalize the Hamiltonian matrix either by a direct or via a basis-set contraction method. Enormous decrease of computer time can be achieved, with respect to a direct application of the optimal-generalized FBR, by employing one of the simplified nonsymmetric FBRs as is demonstrated in noniterative calculations of the low-lying vibrational energy levels of the H3+ molecular ion. The arithmetic operation counts of the Hamiltonian matrix vector products and the properties of a recently developed diagonalization method [Andreozzi et al., J. Phys. A Math. Gen. 35, L61 (2002)] suggest that the nonsymmetric FBR applied along with this particular diagonalization method is suitable to large scale iterative calculations. Whether or not the nonsymmetric FBR is competitive with the symmetric FBR in large-scale iterative calculations still has to be investigated numerically.
منابع مشابه
Treating singularities present in the Sutcliffe-Tennyson vibrational Hamiltonian in orthogonal internal coordinates.
Two methods are developed, when solving the related time-independent Schrodinger equation (TISE), to cope with the singular terms of the vibrational kinetic energy operator of a triatomic molecule given in orthogonal internal coordinates. The first method provides a mathematically correct treatment of all singular terms. The vibrational eigenfunctions are approximated by linear combinations of ...
متن کاملEvaluation of the rotation matrices in the basis of real spherical harmonics
Rotation matrices (or Wigner D functions) are the matrix representations of the rotation operators in the basis of spherical harmonics. They are the key entities in the generation of symmetry-adapted functions by means of projection operators. Although their expression in terms of ordinary (complex) spherical harmonics and Euler rotation angles is well known, an alternative representation using...
متن کاملComputing vibrational energy levels of CH4 with a Smolyak collocation method.
In this paper, we demonstrate that it is possible to apply collocation to compute vibrational energy levels of a five-atom molecule using an exact kinetic energy operator (with cross terms and coordinate-dependent coefficients). This is made possible by using (1) a pruned basis of products of univariate functions; (2) a Smolyak grid made from nested sequences of grids for each coordinate; (3) a...
متن کاملSymmetric Functions and Bn -invariant Spherical Harmonics
The wave functions of a quantum isotropic harmonic oscillator in N-space modified by barriers at the coordinate hyperplanes can be expressed in terms of certain generalized spherical harmonics. These are associated with a product-type weight function on the sphere. Their analysis is carried out by means of differential-difference operators. The symmetries of this system involve the Weyl group o...
متن کاملNew biorthogonal potential–density basis functions
We use the weighted integral form of spherical Bessel functions, and introduce a new analytical set of complete and biorthogonal potential–density basis functions. The potential and density functions of the new set have finite central values and they fall off, respectively, similar to r and r at large radii where l is the latitudinal quantum number of spherical harmonics. The lowest order term ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 124 1 شماره
صفحات -
تاریخ انتشار 2006